INNOWIND Forschungsgesellschaft mbH in cooperation with University of Applied Sciences, Saarbrücken and Fraunhofer Institute for Wind Energy, Bremen Prof. Dr.-Ing. Friedrich Klinger Dipl. Ing. Zhong Chen ### Summary: Strong need for fatigue testing of wind turbines - Wind turbine are exposed to fatigue loads. - 109 load cycles within 20 year life time - In spite of computer simulation total loss of wind turbine is possible. - existing testing rig are cost-intensive and power consuming - new INNOWIND concept needs low energy input - Includes testing of rotor hub, pitch bearings and pitch drives - operates in open air - uses remote parameter control techniques #### INNOWIND Concept compared to existing Concepts Load Introduction at 3 blades Load Introduction on shaft end # M. #### Testing Strategy: Simple Configuration with Load Introduction at Blade Roots #### Speeds and Forces at blade segment ## Only one Force F_{xz} per Blade at Distance L Production Loads My versus Fx at the Blade Root for a 2.5 MW Wind Turbine with 103 m Rotor Diameter at 10 m/s Wind Speed. ### Only one actuator at distance L Producing bending moments Mx and My and shear forces Fx and Fy at the blade root with only one actuator force Fcyl at distance L and angle α_z . ### Ratio My/Mx at the Blade Root ## Separation My by frequencies # Separation My by frequencies ## Separation Mx by frequencies The curve with blue colour shows Mx at the blade root for power production with 6 m/s wind speed. #### Generation Fz and Mz at the blade root ## **Testing Rig Configuration** # ĸ, ### Load Introduction on Blade Dummy #### Mass Generate together with blade dummy Mxdw at the blade root # Dimension of the testing rig for 2,5 bis 4 MW # Masse ### Masses #### Simulation with actuator displacement +/- 140 mm and exciter excitation – output data #### Simulation with actuator displacement +/- 140 mm and exciter excitation – output data #### System identification using Remote Parameter Control* ^{*:} trade mark by MTS systems corporation Minneapolis USA #### Iterative Generation Reference input Values with remote parameter control RPC* # Drive the testing rig with input file [X]_{Ref} The final input file [X]_{Ref} is used to perform the test by reproducing loads for several design load cases and repeating according their occurrence in the turbine life time. #### Input and response Data for the turbine testing rig #### Generation of reference values for input files [X] with inverse transfer functions [H]-1 #### Required Input file [X] | | Sz1 | Sz2 | Sz3 | М | n | α_{Z} | |-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Mx1 | H ₁₁ | H ₁₂ | H ₁₃ | H ₁₄ | H ₁₅ | H ₁₆ | | My1 | H ₂₁ | H ₂₂ | H ₂₃ | H ₂₄ | H ₂₅ | H ₂₆ | | Mx2 | H ₃₁ | H ₃₂ | H ₃₃ | H ₃₄ | H ₃₅ | H ₃₆ | | My2 | H ₄₁ | H ₄₂ | H ₄₃ | H ₄₄ | H ₄₅ | H ₄₆ | | Mx3 | H ₅₁ | H ₅₂ | H ₅₃ | H ₅₄ | H ₅₅ | H ₅₆ | | МуЗ | H ₆₁ | H ₆₂ | H ₆₃ | H ₆₄ | H ₆₅ | H ₆₆ | transfer functions [H] $$Sz1=Mx1*H_{11}^{-1}+My1*H_{21}^{-1}+Mx2*H_{31}^{-1}+My2*H_{41}^{-1}+Mx3*H_{51}^{-1}+My3*H_{61}^{-1}$$ $Sz2=.....$ • • • ... #### Generation Reference Values from field measurements